-
> [19] main © (18.06.09 16:20)
Понятно. :)
У меня обычно строго наоборот, сначала графика, потом физика. Но это тупо от того, что я больше на графике специализируюсь...
-
@!!ex ©
А где можно посмотреть твои работы, если не секрет.
-
> [21] Б (19.06.09 17:45)
Часть есть здесь:
http://www.sol-online.org/index.php?content=galleryТри больших проекта на стадии разработки.
Один на стадии пререлиза, скоро смогу скриншоты из него публиковать(по договоренности с заказчиком - не раньше чем будет релиз, я могу распространяться по поводу проекта)
Два других еще и близко не релизы...
-
А зачем собственно?
-
-
> @!!ex © (19.06.09 22:45) [23]
> А зачем собственно?
Просто интересно.
-
Итак, вернемся к начальной теме. Организовал работу дерева, выглядит все следующим образом: после загрузки мира создается дерево которое разбивается один раз и только для ландшафта. Далее получаем узел которому принадлежит точка V. Допустим в узле 100 граней, остается только перебрать их все и найти ближайшую к точке V. Как можно это сделать и стоит ли увеличить степень разбиения дерева или цикл по 100-200 граням это нормально?
-
> [26] Galiaf (27.06.09 15:24)
100-200 граней - это нормально. как искать? перебором тупейшим.
-
Есть формула расстояния до треугольника? Хожу по ссылкам в гугле, либо треугольник получают из карты высот либо какие-то подозрительно сложные процедуры для нахождения расстояния до полигона. Либо не могу сформулировать запрос, например
http://www.gamedev.ru/code/articles/?id=4209
-
> [28] Galiaf (27.06.09 16:52)
ПРиведенная статья вполне отвечает нв ваш вопрос.
-
На самом деле это дейтсивтельно сложная операция.
-
Вот и отлично, просто я начал подозревать, что тот вариант далек от быстрого метода.
-
Тоесть нахождение расстояния до плоскости треугольника - это простейшая операция...
А вот определеить что точка внутри треугольника - это сложно...
Еще сложнее реализовать пересечение с гранями. Собственно обо всем этом подробно написано в приведенной статье.
-
Тоесть нахождение расстояния до плоскости треугольника - это простейшая операция...
А вот определеить что точка внутри треугольника - это сложно...
Еще сложнее реализовать пересечение с гранями. Собственно обо всем этом подробно написано в приведенной статье.
-
В том-то и дело. Мне нужно найти только расстояние до треугольника и сделать это самым быстрым способом, так как выбирать нужные треугольники в узле мне придется по показателю расстояния до него. А судя по тому, что описано в статье мне придется сперва делать проверку на пересечение прямой и плоскости, потом находить точку пересечения и только потом имея эту точку я могу посчитать расстояние между заданной точкой и точкой пересечения.
P.S.
Возможно я что-то попутал, перечетаю статью еще раз.
Еще рассмотрю вариант с получением ближайшей вершины и проверкой каким граням эта вершина пренадлежит.
-
> [34] Galiaf (27.06.09 20:09)
Этот алгоритм несмотря на внешнюю громоздкость работает довольно быстро.